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Abstract

Three forms of the high-frequency asymptotic Green’s function for Lilley’s equation are reviewed and
compared to the exact solution over a wide range of Strouhal numbers. The asymmetric approximation,
which applies to sources away form the jet axis, and the quasi-symmetric approximation, which is arrived
at by making a near-axis source assumption, are both obtained for parallel round jets from a formal
Fourier-transform solution. The ray-theory solution, which is the only high-frequency approximation that
can be applied to more general mean flows, follows from a WKB ansatz and is shown to be closely related
to the asymmetric approximation. The comparisons show that the best overall prediction of the exact
Green’s function is given by the asymmetric approximation which remains accurate down to a Strouhal
number of 1/2. The close relationship between the asymmetric and ray-theory approximations suggests
that the high-frequency asymptotic Green’s function for more general mean flows would be similarly
successful.

1 Introduction
The prediction of jet noise has been an area of continuous interest over the last half century and has become increas-
ingly important in recent years due to stricter noise regulations placed on the commercial aircraft industry. The need
for quieter jet engines has led to several noise abatement techniques such as the placement of tabs and chevrons at the
nozzle exit in order to alter aerodynamic sound generation through enhanced mixing. Accurate and robust prediction
tools are instrumental in the design of more efficient noise-suppression devices.

Noise generation in jets is generally regarded as a by-product of the unsteady features of the flow and, in many sit-
uations of practical interest, the dominant feature is turbulent mixing. Jet mixing noise emanates from both fine-scale
turbulence and the unsteady motions of large-scale coherent structures. The contribution from the latter component is
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usually most important at shallow angles off the downstream axis (especially in supersonic jets) and is often success-
fully predicted using either an instability-wave based approach or a large eddy simulation. It is this noise source that is
most directly impacted by mixing enhancement devices since they tend to breakup the large structures at the expense
of creating more fine-scale turbulence.

The present investigation is concerned with the mixing noise due to fine-scale turbulence which dominates the
spectra away from the downstream jet axis. This component is most often analyzed by employing the acoustic analogy
and assuming that the noise generating eddies are compact and behave as convected acoustic sources. The sound
field is then governed by Lilley’s equation which describes the acoustic propagation on a specified mean flow due
to multipole-type sources. The source distribution is, in general, modelled using appropriate space–time correlation
functions.

Solutions to Lilley’s equation are typically constructed by introducing a Green’s function. This allows the mean-
flow refraction effects to be determined independent of the source distribution and limits the empiricism inherent
in the acoustic analogy to the source modelling problem. Despite the linear nature of Lilley’s equation, accurate
numerical determination of the associated Green’s function for an arbitrary mean flow is still a major undertaking
[1] and consequently much attention has been focused on the simplifications to be gained by use of high-frequency
asymptotics [2, 3, 4].

The high-frequency limit arises when the acoustic wavelength of the aerodynamic noise is much shorter than the
characteristic length scale of the mean flow. For simple round jets, this is usually the case within the first several jet
diameters downstream of the nozzle exit where the mixing layer is thin and the turbulence intensity is at its peak.
The high-frequency noise can be further increased by the presence of mixing enhancement devices. As a result,
high-frequency asymptotic approximations to the Green’s function for Lilley’s equation form the backbone of many
jet-noise prediction schemes, eg. the so-called MGB computer code [5] and its derivatives.

For arbitrary mean flows, the high-frequency solution to Lilley’s equation is described in terms of the ray-theory
of acoustics [4]. However, it is often reasonable to assume, for high Reynolds-number jets of practical interest,
that the mean flow is both locally parallel and axisymmetric – even jets issuing from tab and chevron nozzles are
known to become axisymmetric within 4 to 5 diameters downstream of the nozzle exit. When the locally parallel and
axisymmetric assumption is made, three different closed-form expressions for the high-frequency Green’s function for
Lilley’s equation are found in the literature. Goldstein [6] developed an approximation for the Green’s function by
restricting attention to sources located several acoustic wavelengths off the jet axis and determining the high-frequency
asymptotics of the formal Fourier-transform solution available for parallel round jets. Balsa [2, 5] also obtained an
expression for the high-frequency Green’s function from the formal Fourier-transform solution but did so by assuming
that the source lies near the jet centerline. Finally, Goldstein [3] presented a closed-form ray-theory solution for
parallel round jets.

The goal of limiting the empiricism in jet-noise prediction schemes to the source modelling problem will be
achieved only when the high-frequency asymptotics provide an accurate approximation of the exact Lilley’s equation
Green’s function. Adequate agreement between the exact source directivity and a high-frequency approximation for
Strouhal numbers as small as one has been demonstrated in some limited circumstances by Tester and Morfey [7] using
a ray-theory solution for polar angles outside the zone of silence of a round jet and by Scott [8] for a two-dimensional
isothermal flow with a piecewise constant mean shear. The primary objective of the present paper is to determine the
relative success of the above three high-frequency approximations for parallel round jets by comparing them to the
exact order-one frequency solution over a wide range Strouhal numbers and far-field observation angles. In doing so,
the relationships between the different solution forms will be revealed and the potential success of the high-frequency
approximation for more general mean flows will be discussed.

The general problem defining the Lilley’s equation Green’s function for a uni-directional transversely sheared
mean flow is presented in section 2 where the formal Fourier-transform solution available for parallel round jets is
given. The high-frequency asymptotic behavior of that formal solution is considered in section 3 where the approxi-
mations corresponding to the analyses of Goldstein [6] and Balsa [2, 5] are summarized. Appendices A and B provide
the details of those analyses with the former correcting an error in the derivation of Goldstein [6]. A comparison of
the two high-frequency approximations with the exact order-one frequency Green’s function is given in section 4. It
is shown there that the best over all prediction of the exact result is provided by the corrected expression of Goldstein
which is referred to here as the asymmetric high-frequency approximation and which remains accurate down to a
Strouhal number of 1/2. The Balsa expression is referred to as the quasi-symmetric high-frequency approximation
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and is shown to be at its best when applied to the ring-source directivity in which case it becomes coincident with the
asymmetric approximation at sufficiently large polar angles off the downstream jet axis.

The ray-theory solution, which is reviewed for a uni-directional transversely sheared mean flow in Appendix C, is
shown to be closely related to the asymmetric high-frequency approximation in section 5 where the generalization to
complex rays in the zone of silence is also considered. In section 6, local modifications to the ray-theory solution near
the caustic and branch point are constructed and a composite solution is presented. The composite ray-theory solution
is shown to provide a good approximation to the asymmetric high-frequency solution over the entire range of Strouhal
numbers considered and from this result it is inferred that the high-frequency approximation for more general mean
flows (i.e. mean flows that are non-axisymmetric and/or non-parallel) would be reasonably accurate down to Strouhal
numbers as small as 1/2.

2 Formulation
Interest here is in the acoustic propagation on a parallel, doubly infinite jet for which the mean flow is given by

u = iū(y, z), ρ = ρ̄(y, z), c = c̄(y, z), p = constant, (1)

where u, ρ, c and p are the velocity, density, sound speed and pressure, respectively and (1) is an exact solution to
the inviscid, non-heat-conducting equations of motion. The Cartesian coordinates x = {x, y, z} are chosen such that
x is aligned with the direction of the mean flow and the unit vector i is in that direction. The mean-flow profiles are
required to approach constant ambient values,

ū→ 0, ρ̄→ ρ̄∞, c̄→ c̄∞,

as
√
y2 + z2 → ∞.

Assuming a calorically perfect ideal gas, the linearized equation governing the acoustic propagation on (1) is [9]

LΠ =
D
Dt

(
D2

Dt2
− ∇·c̄2∇

)
Π + 2c̄2∇ū·∇

∂

∂x
Π = Γ , (2)

where Π denotes the acoustic pressure fluctuation normalized by ρ̄c̄2,

D
Dt

≡ ∂

∂t
+ ū

∂

∂x

is the convective derivative relative to the mean flow and t denotes the time. The term Γ represents the acoustic source
distribution and is given by

Γ =
D
Dt

∇·f − 2∇ū·
∂

∂x
f , (3)

when this quantity is produced by a fluctuating force per unit volume. In the absence of temperature fluctuations,
Lilley’s equation [10] is obtained by replacing f with the quadrupole source distribution f = ∇·(v ⊗ v) where v is
the velocity fluctuation relative to the mean flow and ⊗ denotes the tensor product.

Since (2) is linear, the solution for an arbitrary source distribution can be obtained through superposition of
solutions to

L
[
Gω(x|xs)e

−iωt
]

=
D
Dt

[
c̄2∞δ(x − xs)e

−iωt
]
, (4)

where ω is the frequency, xs is the source position, δ is the Dirac delta function and Gω denotes a reduced Green’s
function. It is common practice to include the convective derivative D/Dt in the inhomogeneous term of the reduced
Green’s function equation because doing so simplifies the subsequent computation of the acoustic field when attention
is restricted to the first term in (3) – the so-called self-noise term. It should be noted however that use of (4) does not
limit the form of Γ since the reduced Green’s function Gω corresponding to the right-hand side,

c̄2∞δ(x − xs)e
−iωt,
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is related to Gω by

Gω(x|xs) = −
(

iω + ūs

∂

∂xs

)
Gω(x|xs), (5)

where the subscript s denotes evaluation at the source position.
When the mean flow depends only on the radial coordinate in the y–z plane r ≡

√
y2 + z2, a formal solution for

Gω can be obtained by reducing (4) to a system of linear ordinary differential equations. Following Goldstein [6], the
reduced Green’s function is written as

Gω(x|xs) =
1

4π2

+∞∑

n=−∞
ein(ϕ−ϕs)

∫ +∞

−∞
Gn(r|rs ;ω, k1)e−ik1(x−xs)dk1, (6)

where ϕ ≡ arctan(z/y) is the azimuthal angle in the y–z plane. The Fourier coefficients Gn are determined by

Φ
2

r

d
dr

(
r

Φ2

d
dr
Gn

)
+

[
k2
0(Φ

2 − κ2) − n2

r2

]
Gn = −δ(r − rs)

ra2
, (7)

where Φ ≡ (1+κM)/a, k0 ≡ ω/c̄∞, κ ≡ k1/k0, a ≡ c̄/c̄∞ is the local sound speed normalized by its ambient value
and M ≡ ū/c̄∞ is the local Mach number based on the ambient speed of sound.

Equation (7) must be solved subject to the conditions that Gn remains bounded at r = 0 and behaves like
an outgoing wave as r → ∞. The solution satisfying these conditions can be expressed in terms of two linearly
independent homogeneous solutions to (7), say w1 and w2, as follows [11]

Gn(r|rs;ω, k1) =
w1(r|κ)w2(rs|κ)
rsa2

sW (rs|κ)
for r > rs, (8)

where
W (r|κ) ≡ w1(r|κ)w′

2(r|κ) − w′
1(r|κ)w2(r|κ)

is the Wronskian, a prime denotes differentiation with respect to r and the wj have been chosen such that

w1 → constant × r−
1
2 eik0

√
1−κ2r, as r → ∞, (9)

w2 → constant × r|n|, as r → 0. (10)

Only the r > rs form of Gn is given since primary interest is in the behavior of the solution in the far field.
The homogeneous solutions wj must be determined numerically in general. However, when the frequency is

sufficiently large, the equations become simple enough to be solved analytically. The high-frequency limit has the
additional benefit of ‘cutting-off’ any spatially growing instability waves which appear as discrete eigensolutions to
(7).

3 High-frequency, far-field approximation
The high-frequency limit describes the situation wherein the wavelength of the acoustic field, 1/k0 = c̄∞/ω, is

much shorter than the characteristic length scale of the mean flow, viz. the jet radius

rJ ≡ 1

MJ

∫ ∞

0

ū(r)

c̄(r)
dr =

1

MJ

∫ ∞

0

M(r)

a(r)
dr, (11)

where MJ is a jet Mach number which is taken here to be the ratio of the axial velocity to the local speed of sound at
the jet centerline. Since the mean flow is parallel in the present analysis, the streamwise wavelength 1/k1 scales like
1/k0 and the high-frequency limit can therefore be expressed mathematically as

ω

c̄∞
= k0 → ∞, with

k1

k0
= κ = O(1),

where it has been assumed, for simplicity, that the mean-flow quantities M , a and rJ are all order one.
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In many technological applications, one is only interested in the behavior of the acoustic field at remote distances
(in terms of the characteristic mean-flow length scale) from the aerodynamic noise sources. The so-called far-field
behavior is most conveniently expressed by introducing polar coordinates in the x–r plane,

R =
√

(x− xs)2 + (r − rs)2, θ = arccos

(
x− xs

R

)
,

with the origin at the source point, and considering the limit as R → ∞.
Using (9), it can be shown that the integrand in (6) has a point of stationary phase at

κ = −cos θ +O(R−1),

as R → ∞. The integral over k1 can then be approximated using the method of stationary phase [11] with the result
that

∫ +∞

−∞
Gn(r|rs ;ω, k1)e

−ik1(x−xs)dk1

∼
(

2πk0sin
2 θ

iR

) 1
2 w1(r| − cos θ)w2(rs| − cos θ)

rsa2
sW (rs| − cos θ)

eik0R cos2 θ, (12)

as k0, R → ∞.
The asymptotic approximation for Gω is completed by determining the high-frequency behavior of w1 and w2.

To facilitate this, new dependent variables v1 and v2 are introduced as follows

wj(r| − cos θ) =
Φ(r)√
r
vj(r) for j = 1, 2,

where now Φ = (1 −Mcos θ)/a. Substituting into (7), (9) and (10) shows that the vj must satisfy

v′′ + (k2
0Q

2
n + S)v = 0 (13)

subject to
v1 → constant× eik0rsin θ, as r → ∞, (14)

v2 → constant × r
1
2
+|n|, as r → 0, (15)

where
rQn(r) ≡

√
r2q2 − (n/k0)2, q(r) ≡

√
Φ2 − cos2 θ, (16)

S(r) ≡ Φ

r

(
rΦ′

Φ2

)′
+

(
1

2r

)2

, (17)

and the square roots in (16) are chosen such that they have positive imaginary parts for negative arguments. Introducing
v1 and v2 into (12) and the result into (6) leads to

Gω(x|xs) ∼
Gω(x|xs)Rω(x|xs)

as(1 −Mscos θ)
, (18)

as k0, R → ∞, where

Gω(x|xs) ≡
eik0R

4πR
, (19)

corresponds to the reduced free-space Green’s function when both the source and far-field observation points lie in the
same azimuthal plane,

Rω(x|xs) ≡
+∞∑

n=−∞

(
2k0sin θ

iπrs

) 1
2 v1(r)v2(rs)

V
ein∆ϕ−ik0Rsin2 θ, (20)
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∆ϕ ≡ ϕ− ϕs and V ≡ v1v
′
2 − v′1v2 is the Wronskian which, in view of (13), is independent of r.

Before the high-frequency asymptotic solutions to (13) can be constructed, the scaling of the azimuthal wavenum-
ber n with k0 must be considered. The summation in (20) suggests the need for uniformly valid approximations to v1

and v2 for all n. However, the dominant behavior of Gω in the limit as k0 → ∞ is determined by a relatively small
number of azimuthal modes centered about a critical value of n and it suffices to construct asymptotic solutions to (13)
based on the k0 scaling of that critical value.

When the distance between the source and the jet axis is sufficiently large (i.e. several factors of 1/k0), the result-
ing acoustic field is asymmetric and the critical azimuthal wavenumber behaves like the streamwise wavenumber and
scales with k0. This scaling was considered by Goldstein [6] and will be referred to as the asymmetric, high-frequency
approximation. As the source moves closer to the jet axis the acoustic field becomes increasingly axisymmetric and
eventually the critical value of n scales like 1/rJ . The near-axis source problem was analyzed by Balsa [2, 5] and will
be referred to here as the quasi-symmetric, high-frequency approximation.

Solutions to (13) using the asymmetric, high-frequency scaling,

n = O(k0) as k0 → ∞,

were constructed by Goldstein [6] however the bounded solution used in that analysis (equation (6.61) of reference
[6]) is in error. The correct asymptotic solutions for v1 and v2 are given in Appendix A. Using those results in (20)
leads to

Rω ∼
+∞∑

n=−∞

[
2

k0

√
−ηn(rs)

rsQn(rs)

] 1
2

Ai[ηn(rs)]e
in∆ϕ+ik0(ζn−Rsin2 θ), (21)

as k0, R → ∞, where

ηn(r) ≡ −
[
3
2k0ζn(r)

] 2
3 , ζn(r) ≡

∫ r

rδ

Qn(r)dr, Q2
n(rδ) = 0,

Ai denotes the Airy function and the cube root in the definition of ηn is taken such that ηn ≶ 0 for r ≷ rδ .
Solutions to (13) using the quasi-symmetric, high-frequency scaling,

n = O(1) as k0 → ∞,

are given in Appendix B. Substituting (59) into (20) yields

Rω ∼
+∞∑

n=−∞

√
i 12πk0ξ H(1)

n (k0ξ)Jn(k0ξs)ein∆ϕ−ik0Rsin2 θ, (22)

as k0, R → ∞, where

ξ(r) ≡
∫ r

0

q(r)dr = ζ0(r) − ζ0(0),

H(1)

n and Jn denote the Hankel and Bessel functions of the first kind, respectively, and the quantity under the square
root in (22) has been simplified by making the approximation ξs ≈ rsqs which was also used in reference [5] and
becomes increasingly accurate as rs → 0.

One of the advantages of the quasi-symmetric approximation is that the sum over n in (22) can be evaluated in
closed form. Using Graf’s addition theorem [12], one can write

+∞∑

n=−∞
H(1)

n (k0ξ)Jn(k0ξs)e
in∆ϕ = H(1)

0

(
k0

√
ξ2 + ξ2s − 2ξξs cos∆ϕ

)
,

which, when substituted into (22), leads to

Rω ∼ eik0(ξ−Rsin2 θ−ξs cos∆ϕ), (23)

as k0, R → ∞, where H(1)

0 has been replaced by its large argument behavior since ξ → ∞ in the limit R → ∞.
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Figure 1. Mean-flow profiles (25) and (28) with MJ = 0.9 and TR = 3.

4 Comparison of exact and asymptotic solutions
Comparisons of the high-frequency, far-field approximations to the exact solution for the reduced Green’s function

are most easily carried out in terms of Gω. It follows from (5) and (18) that

Gω(x|xs) ∼
iGω(x|xs)

ω(1 −Mscos θ)
∼ iGω(x|xs)Rω(x|xs)

ωas(1 −Mscos θ)2
, (24)

as k0, R→ ∞, where Rω is given by (21) or (23) for the asymmetric or quasi-symmetric approximation, respectively.
The exact solution for Gω is obtained numerically using the adjoint Green’s function scheme given by Tam and
Auriault [13]. The interested reader is referred to that reference for the details.

The mean-flow Mach number profile used in the comparisons is

ū(r)

c̄(r)
=
M(r)

a(r)
= MJsech2(2r), (25)

and it follows from (11) that the jet radius rJ = 1/2. The profile is shown in figure 1 for a jet Mach numberMJ = 0.9.

Two different profiles are considered for the sound speed ratio a. The first corresponds to an isothermal jet which,
in view of the ideal-gas result

c̄ =
√
γ<T , (26)

has a constant speed of sound and therefore
a(r) = 1, (27)

where γ is the ratio of specific heats, < is the gas constant and T is the mean static temperature. The second profile is
obtained from (26) and the Crocco–Busemann law and is given by

a2(r) = 1 +

(
1 +

γ − 1

2
M2

J

) 1
2 TR − 1

MJ

√
TR

M(r) − γ − 1

2
M2(r), (28)

where

TR ≡
(

1 +
γ − 1

2
M2

J

)
TJ

T∞
,
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Figure 2. Turning point functions for an isothermal jet at various θ.

is the ratio of the stagnation temperature at the jet centerline to the ambient temperature. In the results presented here,
γ = 1.4, < = 287.06J/kgK and T∞ = 290K. The a profile obtained from (25) and (28) with MJ = 0.9 and TR = 3
is shown in figure 1.

In deriving the asymmetric, high-frequency approximation (21), it was assumed (see Appendix A) that, for each
order-k0 value of n, (13) has one simple turning point rδ corresponding to a zero of Q2

n. Figure 2(a) is a plot of r2q2

for various polar angles θ using (25) and (27) with MJ = 0.9. Similar curves are obtained for hot jets with a given by
(28). Since the zeroes of Q2

n are determined by solutions to

r2q2 = (n/k0)
2, (29)

figure 2(a) shows that the turning-point assumption made in Appendix A holds for 0 < θ 6 150 provided n/k0 6= 0.
For θ > 150, multiple turning points are possible for certain values of n/k0. This behavior can be accounted for by
making appropriate modifications to the analysis in Appendix A, however these upstream angles are usually of no
practical interest and will not be considered here.

The curves in figure 2(a) show that the turning-point assumption of Appendix A is violated when n = 0 and
θ & 58 in which case (29) has no real solution for rδ (see also figure 2b). Since the azimuthal wavenumber scaling
n = O(k0) clearly does not apply to the n = 0 term in (20), it would seem that this term must be evaluated using
the n = O(1) scaling of the quasi-symmetric approximation. However, if the convention that rδ = 0 when Q2

n has
no zeroes is adopted (as is done for rσ in Appendix B), it can be shown that (54) and (59) agree at n = 0 by simply
replacing the functions Ai, H(1)

0 and J0 appearing in these expressions by their large argument behaviors. The same
proof also applies when Q2

0 has a zero provided the simplifying assumption rδ − rs � k−2/3

0 of Appendix B is made.
It therefore follows that the results of Appendix A remain valid even when n = 0.

The quasi-symmetric analysis of Appendix B is based on the assumption that (56) has at most one simple turning
point rσ corresponding to a zero of q2. Figure 2(b) is a plot of q2 for various angles θ and the same isothermal mean-
flow profiles used in part (a). Again, similar curves were found for heated jets. It is clear from the figure that q2 has
one simple zero for 0 < θ . 58 and none for θ & 58. At θ ≈ 58, q2 has a higher-order zero at r = 0 which was not
accounted for in the analysis of Appendix B. The effect of this omission is highly localized and, apart from a small
neighborhood of θ ≈ 58, the turning point assumption of Appendix B is satisfied for the entire range of polar angles
considered here.

When comparing the exact and asymptotic solutions for Gω, it is convenient to work in terms of the ratio Gω/Gω

since this quantity becomes independent of the radial parameter R in the high-frequency, far-field limit. Figures 3–6
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Figure 3. |
�

ω /Gω | × 104 for an isothermal jet with rs = 0.75 and St = 2. Solid lines, asymmetric approximation; dashed lines,

quasi-symmetric approximation; symbols, exact solution. (a) ∆ϕ = 0; (b) ∆ϕ = 30, dot-dashed line, composite ray solution; (c)

∆ϕ = 90; (d) ∆ϕ = 120.

show |Gω/Gω| as a function of the polar angle θ for various values of the Strouhal number,

St ≡ ω

2π

2rJ
c̄∞a(0)MJ

=
k0

π

rJ
a(0)MJ

.

Parts (a–d) of each figure correspond to azimuthal-angle parameters ∆ϕ of 0, 30, 90 and 120. The asymmetric and
quasi-symmetric approximations are indicated by the solid and dashed lines, respectively, and the symbols correspond
to the exact solution. The asymmetric approximation given by (21) was evaluated by summing the convergent series
in the azimuthal wavenumber n from −N to +N where N varied from 11 at St = 2 down to 4 at St = 0.25. The
results in figures 3–6 were computed for a point source at rs = 0.75 using a mean flow given by (25) and (27) with
MJ = 0.9.

Figure 3 shows excellent agreement between the asymmetric approximation and the exact result for all ∆ϕ. The
level of agreement tends to diminish as St decreases but remains fairly good down to St = 0.5, cf. figure 5. At
the smallest Strouhal number (cf. figure 6), the asymmetric approximation, although no longer in good quantitative
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Figure 4. As figure 3 but for St = 1.

agreement, does still correctly predict the trends of the exact solution – a peak near θ = 60 with a steep drop off for
θ < 60 and a more gradual decline for θ > 60.

Figures 3–6 show that, at θ = 90, both the asymmetric and quasi-symmetric approximations remain in near perfect
agreement with the exact solution for all St. At θ = 90, the mean-flow refraction effects for an isothermal jet vanish as
can be readily verified from the expression for Φ. It is interesting to note that this exceptional case is captured equally
well by both high-frequency approximations despite their differences in assumed azimuthal wavenumber scaling.

Considering the quasi-symmetric approximation, the most striking feature revealed by figures 3–6 is the failure
to predict the oscillatory behavior of the exact solution in the range 30 < θ < 60. This is due in large part to the
assumption introduced in reference [2] (and used in Appendix B) that the no-turning-point form of Gω adequately
approximates the Green’s function when rs > rσ > 0. It can be seen from figure 2(b) that (56) has a turning point
that lies between the source position rs = 0.75 and the jet axis when 30 < θ < 60. By neglecting the turning point,
the quasi-symmetric approximation does not allow for ray-interference effects which are primarily responsible for the
oscillations in the exact solution. The issue of interference is discussed in more detail in section 6 where the ray-theory
approximation of the Green’s function is considered.

The figures also show that, in the range θ < 30, the quasi-symmetric approximation tends to over predict |Gω/Gω|

10NASA/CR—2003-212089
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Figure 5. As figure 3 but for St = 0.5.

when ∆ϕ < 90 and under predicts this quantity when ∆ϕ > 90. For θ > 60, the agreement between the quasi-
symmetric approximation and the exact solution actually improves as St decreases. This surprising behavior, which
was also noted by Balsa [2], is probably due to the increase in acoustic length scale with decreasing Strouhal number
which, for a fixed source position, makes the solution appear more axisymmetric. It should also be noted that the
ray-interference effects near θ = 60 diminish as St decreases and this too improves the agreement with the exact
solution.

When modelling the acoustic-source distribution Γ for use in a noise prediction scheme, it is usual to assume
that the sources are sufficiently compact so that only the absolute value of Gω appears in the resulting formulae.
Nevertheless, it may be of some interest to see how well the high-frequency, far-field approximations predict the phase
of Gω/Gω. This quantity is plotted in figure 7 at St = 1 for various ∆ϕ and the same mean flow used for figures 3–
6. The curves show that overall the asymmetric approximation is better than the quasi-symmetric approximation at
predicting the exact result. The quasi-symmetric approximation is at its best when ∆ϕ < 90 and θ > 45.

In the case of round jets, it is often also assumed that the strength and orientation of the sound sources that make up
Γ are independent of the azimuthal angle. The sound field emitted by such a source distribution is then axisymmetric
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0 30 60
θ

90 120 150 0 30 60
θ

90 120 150

(a) (b)

(c) (d)

0

10

20

30

0

10

20

30

Figure 6. As figure 3 but for St = 0.25.

and, at fixed axial and radial positions, can be characterized by a ring-source directivity factor which is defined here as

D ≡
∫ +π

−π

∣∣∣∣
Gω

Gω

∣∣∣∣
2

dϕs,∼
1

ω2a2
s(1 −Mscos θ)4

∫ +π

−π

|Rω|2dϕs,

as k0, R → ∞. It follows from (21) that

∫ +π

−π

|Rω |2dϕs ∼ 4π

k0

+∞∑

n=−∞

√
−ηn(rs)

rsQn(rs)
Ai2[ηn(rs)], (30)

for the asymmetric approximation, and from (23) that
∫ +π

−π

|Rω|2dϕs ∼ 2πe−2k0Imξσ I0(2k0Imξs) ≈ 2πe−2k0Im(ξσ−ξs), (31)

for the quasi-symmetric approximation, as k0, R→ ∞, where I0 denotes the modified Bessel function of the first kind
and zero-th order and a subscript σ indicates evaluation at the turning point r = rσ . The approximation introduced
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Figure 7. arg(
�

ω /Gω) for an isothermal jet with rs = 0.75 and St = 1. Solid lines, asymmetric approximation; dashed lines,

quasi-symmetric approximation; symbols, exact solution. (a) ∆ϕ = 0; (b) ∆ϕ = 30; (c) ∆ϕ = 90; (d) ∆ϕ = 120.

on the right-hand side of (31) corresponds to a leading-order composite expansion for the ring-source directivity and
puts the quasi-symmetric approximation in agreement with the relation used in the so-called MGB computer code of
reference [5].

The ring-source directivity factor is plotted as a function of polar angle θ in figures 8–11 for Strouhal numbers
St = 2, 1, 0.5 and 0.25. Parts (a) and (b) of each figure correspond to the mean flow given by (25) and (27) with
MJ = 0.9 but differing source positions, rs = 0.5 and 0.75, respectively. Similarly, parts (c) and (d) show results at
rs = 0.5 and 0.75, respectively, for the heated jet given by (25) and (28) with MJ = 0.9 and TR = 3.

The figures show that the agreement between the asymmetric approximation and the exact result is excellent at
St = 2 and remains good down to St = 0.5. Even at St = 0.25, the approximation does a fair job at predicting the
exact result for θ > 60 which corresponds to the range where the jet noise is dominated by fine-scale turbulence in
many technological applications. At the two largest Strouhal numbers, the level of agreement shows no sensitivity to
changes in the source radius or mean-flow temperature profile. A sensitivity to the source radius becomes apparent at
the two lowest St but only in the range θ < 60. This may indicate an increased importance of the n = 0 term in (30)
as the source moves toward the jet center line.
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Figure 8. Ring-source directivity D×106 for isothermal (a, b) and heated (c, d) jets at St = 2. Solid lines, asymmetric approximation;

dashed lines, quasi-symmetric approximation; symbols, exact solution. (a, c), rs = 0.5; (b, d), rs = 0.75.

The agreement between the quasi-symmetric approximation and the exact solution is best when θ > 60 regardless
of St. In this range of θ, the quasi-symmetric and asymmetric ring-source approximations are nearly coincident – a
result that is not simply fortuitous. By approximating the sum in (30) with a Riemann integral [11], replacing Ai by
its large (negative) argument behavior and determining the large-k0 behavior of the resulting integral, it can be shown
that the right-hand side of (30) becomes 2π as k0 → ∞ when rs − rδ � k−2/3

0 which is in exact agreement with the
quasi-symmetric approximation (31).

For θ < 60, the quasi-symmetric approximation is never very good, primarily because of a consistent over
prediction of the θ at which D is a maximum. This may indicate the increased importance of asymmetric effects when
the Green’s function problem possesses a turning point. A conjecture that is supported by the fact that the agreement
in the downstream range θ < 90 appears to be worse for the heated jet which, it turns out, has a broader range of
θ where a turning point arises in the Green’s function problem. The improvement in overall agreement between the
quasi-symmetric approximation and the exact result observed with decreasing St in the point-source comparison is not
apparent in the ring-source comparison which suggests that the point-source observation may be strongly dependent
on the azimuthal angle parameter ∆ϕ.
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Figure 9. As figure 8 but for St = 1.

5 Connection to Ray theory
The comparisons of the previous section show that, for parallel round jets, the asymmetric, high-frequency ap-

proximation is in good agreement with the exact Lilley’s equation Green’s function over a wide range of Strouhal
numbers. One would like to demonstrate a similar level of agreement between the exact and high-frequency asymp-
totic solutions for more general mean flows. Unfortunately, when the mean flow is neither axisymmetric nor parallel,
the problem governing the acoustic propagation can no longer be reduced to a system of linear ordinary differential
equations by Fourier analysis and an asymptotic analysis of the type described in section 3 is no longer possible. Nev-
ertheless, analytic progress can still be made for more general mean flows by considering the high-frequency limit.
The corresponding asymptotic solutions are then described in terms of the ray theory of acoustics [3, 4].

The ray-theory solution of (4) for the uni-directional transversely sheared mean flow (1) is summarized in Ap-
pendix C. It is implicitly assumed, when constructing this solution, that the length scale of the acoustic field is order
1/k0 in all directions. Consequently, the ray-theory approximation (77) is expected to be closely related to the asym-
metric approximation (21).

In order to demonstrate the connection between (21) and (77), the latter result must be specialized to an axisym-
metric mean flow as done by Goldstein [3]. Introducing the mean-flow profiles M(r) and a(r) into (78) shows that
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Figure 10. As figure 8 but for St = 0.5.

rs(ϕ) is constant along each ray. If (70) and (71) are then used to eliminate θ∞ in favor of θ in the remaining equations,
they become, to the required order of accuracy,

ṙ = ±
[
Q(r|ν?) + R∞−R

Rsin θ
cos2 θ

]
, r2ϕ̇ = ν?,

Ṡ⊥ = ν?ϕ̇+Q2(r|ν?) − sin2 θ,




 (32)

which must be solved subject to
r = rs, ϕ = ϕs, S⊥ = 0,

at τ = 0, where ν? ≡ rsqs sin(λ− ϕs) = rs(ϕ),

rQ(r|ν?) ≡
√
r2q2 − ν2

? , (33)

a dot denotes differentiation with respect to the ray parameter τ and use has been made of (75) in arriving at the
definition of ν?. The order 1/R term in the ṙ equation must be retained because it leads to an order-one contribution
in the far-field behavior of S⊥. The branch cuts of Q are specified below. For the present, attention will be restricted
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Figure 11. As figure 8 but for St = 0.25.

to the case where ν? is purely real which, it turns out, implies Q2 > 0 along the rays. A necessary (but not sufficient)
condition for ν? to be purely real is that the source be located such that q2

s > 0.

The choice of sign in the ṙ equation of (32) is a function of the initial condition,

ṙ = qs cos(λ − ϕs) at τ = 0,

as well as the number of zeroes of Q encountered along a ray trajectory r(τ). It is assumed here (in agreement with
the turning-point assumptions made in Appendices A and B) that rQ is a monotonically increasing function of r with
at most one simple zero. rQ will then be non-zero and r will increase monotonically with τ for rays initially directed
away from the jet centerline, i.e. −π/2 < λ− ϕs < π/2. These solutions, for which the positive sign in (32) applies,
will be referred to as direct rays. For rays initially directed toward the jet centerline, i.e. π/2 < λ − ϕs < 3π/2, but
which eventually reach the far field, r initially decreases with increasing τ until r = rδ where Q vanishes. Once this
occurs, r begins to increase with τ and the sign in (32) must change from negative to positive. These solutions will be
referred to as indirect rays.
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In view of the preceding discussion, the solutions to (32) can be written as

∆ϕ = ϕ− ϕs =

( ∫ ∞

rδ

∓
∫ rs

rδ

)
ν?dr

r2Q(r|ν?)
, (34)

S⊥ = ν?∆ϕ+ ζ(r|ν?) ∓ ζ(rs|ν?) −Rsin2 θ −R∞ +R, (35)

where

ζ(r|ν?) ≡
∫ r

rδ

Q(r|ν?)dr, Q2(rδ |ν?) = 0, (36)

and the upper (lower) signs in (34) and (35) apply to the direct (indirect) rays. Notice that rδ cancels out of both the
∆ϕ and S⊥ solutions when the upper set of signs are chosen. Substituting these results into (77) yields

Rω ∼
[
±rsQ(rs|ν?)

∂ϕ

∂ν?

]− 1
2

eik0[ν?∆ϕ+ζ(r|ν?)∓ζ(rs|ν?)−Rsin2 θ], (37)

as k0, R → ∞, where dν? = ±rsQ(rs|ν?)dλ follows from the definition of ν?.
The connection between (37) and (21) is established by showing that the former result is nothing more than the

leading-order, large-k0 approximation of the latter. This is done by using the Poisson sum formula [14] to rewrite (21)
as

Rω ∼
+∞∑

m=−∞

∫ +∞

−∞

[
2k0

√
−η(rs|ν)

rsQ(rs|ν)

] 1
2

Ai[η(rs|ν)]eik0[αmν+ζ(r|ν)−Rsin2 θ]dν, (38)

as k0, R → ∞, where αm ≡ ∆ϕ+ 2πm,

η(r|ν) ≡ −
[
3
2k0ζ(r|ν)

] 2
3 ,

and Q(r|ν) and ζ(r|ν) are given by (33) and (36) with ν? replaced by ν.
Since the argument of the square root in (33) can now be negative (or even complex when the ν integration of

(38) is performed in the complex plane), the branch cuts of Q must be made explicit. In the present context, it is clear
that Q is simply a generalization of the function Qn defined by (16) where the square root was chosen so that it has a
positive imaginary part for negative (real) arguments. The appropriate generalization of this choice to arbitrary values
of ν is

rQ(r|ν) =
√
|r2q2 − ν2| ei 1

2
[arg(rq−ν)+arg(rq+ν)]

with − 1
2π 6 arg(rq ± ν) < 3

2π



 . (39)

The branch cuts of Q(rs|ν) in the complex ν plane are shown in figure 12. It is worth noting here that

lim
ν2→r2

sq2
s

√
−η(rs|ν)

rsQ(rs|ν)
= [k0P(rs)]

1
3 ,

where P(r) ≡ 1/r(r2q2)′, which shows that the integrand in (38) remains bounded at the branch points of Q(rs|ν).
The integral in (38) is evaluated asymptotically in the limit k0 → ∞ using the method of steepest descents [11]

which requires making the k0 dependence of the integrand explicit. The Airy function Ai can be replaced with its
large argument behavior along the entire real ν axis except in the small order k−2/3

0 neighborhoods of the branch
points ±rsqs. Thus

Rω ∼





R(−)
ω − iR(+)

ω + R(×)
ω for q2s > 0,

R(−)
ω for q2s < 0,

(40)

as k0, R → ∞, where

R(∓)

ω ≡
+∞∑

m=−∞

∫

C(∓)

[
ik0

2πrsQ(rs|ν)

] 1
2

eik0[αmν+ζ(r|ν)∓ζ(rs|ν)−Rsin2 θ]dν, (41)
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Figure 12. Branch cuts of Q(rs|ν) in the complex ν plane. (a) q2
s > 0, C(+) lies between ±rsqs where it overlaps C(−); (b) q2

s < 0.

and R(×)
ω is given by the right-hand side of (38) but with the integration done over the contour C (×). The contours

C(−), C(+) and C(×) are shown in figure 12.
For the present, it will be supposed that the dominant behavior of (38) is not determined by R(×)

ω . This exceptional
case is considered in the following section. Applying the method of steepest descents to (41) yields

R(∓)

ω ∼
∑

ν?

[
rsQ(rs|ν?)

∣∣∣∣
∂ψ

∂ν?

∣∣∣∣
]− 1

2

ei(β+ 1
4
π)eik0[αm?ν?+ζ(r|ν?)∓ζ(rs|ν?)−Rsin2 θ], (42)

as k0 → ∞, where

− 1
2π < β ≡ − arg

[
(i∂ψ/∂ν?)

1
2

]
6 1

2π,

m? and ν? are determined by the saddle-point condition

αm? = ∆ϕ+ 2πm? = ψ(ν?) ≡
( ∫ ∞

rδ

∓
∫ rs

rδ

)
ν?dr

r2Q(r|ν?)
, (43)

and the ? subscript is reused in order to emphasize the connection with the ray-theory solution.
It is immediately evident that the ray solution (34) and the saddle-point condition (43) are merely different versions

of the same relation. The latter result determines ν? as a, possibly multi-valued, function of ∆ϕ. Multiple solutions
for ν? at a fixed ∆ϕ are accounted for by the summation in (42) and indicate different rays reaching the same far-field
observation point. The ray solution (34) determines ∆ϕ as a single-valued function of ν? so no special treatment is
needed for rays that reach the same far-field position. The 2πm? factor in (43) allows for the possibility that ψ falls
outside the range [−π,+π].
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Figure 13. Contours in the complex r plane (a, c) and corresponding regions in the complex ν plane (b, d). Shaded areas indicate

location of branch cuts of Q(r|ν) along indicated r contours. (a, b), pertain to ζ(r|ν?) + ζ(rs|ν?) when q2
s > 0; (c, d), pertain to

ζ(r|ν?) − ζ(rs|ν?) when q2
s < 0.

Equations (34) and (43) also imply that ∂ψ/∂ν? = ∂ϕ/∂ν?. If ν? is purely real as assumed when deriving (37),
ψ is also purely real and the amplitude factor in (42) can be rewritten as

[
rsQ(rs|ν?)

∣∣∣∣
∂ψ

∂ν?

∣∣∣∣
]− 1

2

ei(β+ 1
4
π) =

[
rsQ(rs|ν?)

∂ψ

∂ν?

]− 1
2

.

It then follows that R(−)
ω corresponds to the direct-ray solution given by the upper signs in (37) and the indirect-ray

solution will correspond to −iR(+)
ω provided

[
−rsQ(rs|ν?)

∂ϕ

∂ν?

]− 1
2

=

[
rsQ(rs|ν?)

∂ϕ

∂ν?

]− 1
2

e−i 1
2
π.

The above condition removes the ambiguity in the phase of (37) when the lower signs are taken. The −π/2 phase shift
is a consequence of the indirect ray having passed through the caustic at r = rδ before reaching the far field. The shift
is left undetermined in the ray-theory solution described in Appendix C and, in general, must be obtained through a
local analysis near the caustic [15].

The above results clearly establish the connection between the asymmetric, high-frequency solution (21) and
the ray-theory solution (37) when ν? is purely real. Since the location in the complex ν plane of the saddle point
determined by (43) is not restricted (other than as required by the method of steepest descents), (40) and (42) show
how (37) can be generalized to complex rays. The technique of applying the method of steepest descents to a classical
high-frequency solution in order to guide the generalization of a ray-theory result to complex rays is well known
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[16, 17]. Less well known are the methods for developing a complex ray theory when no classical high-frequency
solution is available as, for example, in the case of the uni-directional, transversely sheared, mean flow considered in
Appendix C. A survey of available approaches for doing just this is given by Chapman et al. [18].

6 Evaluation of ray-theory solution
In arriving at the large-k0 approximation of R(∓)

ω given by (42), it was implicitly assumed that the integrand in
(41) can be analytically continued into the complex ν plane so as to allow integration along a contour that is (at least
locally) coincident with the steepest descent paths intersecting at ν?. When ν? is complex, care must be taken during
the evaluation of (42) because rδ is then also complex and the integration of Q in the definition of ζ must be done
along a contour in the complex r plane. For each point along that contour,Q has branch cuts in the ν plane determined
by (39). The r-integration contour must therefore be chosen such that these branch cuts leave a region of analyticity
in the complex ν plane that contains both ν? and the real axis. Figure 13 shows example contours in the complex r
plane used for the evaluation of ζ(r|ν?) + ζ(rs|ν?) and ζ(r|ν?) − ζ(rs|ν?) as well as the corresponding regions of
analyticity in the complex ν plane.

Figure 14 contains a plot of the saddle point ν? determined from (43) as a function of polar angle θ for ∆ϕ = 60,
rs = 0.75 and the mean flow given by (25) and (27) with MJ = 0.9. The direct (indirect) ray solutions, which
correspond to the upper (lower) signs in (43), are indicated by a 4 (�). The real and imaginary parts of ν? are denoted
by the open and closed symbols, respectively.

The figure shows that the complex solutions for ν? are confined to the range θ . 39.5. These solutions describe the
so-called zone of silence where a significant reduction in the sound radiated to the far field results from an exponential
decay in Rω . Notice that the boundary of the zone of silence does not coincide with the value θ ≈ 30.67 where
q2s = 0 (cf. figure 2b). Just outside the zone of silence is a range of θ where multiple (real) solutions for ν? are found.
These multiple solutions occur when different rays reach the same far-field observation point and give rise to ray-
interference effects which can be either constructive or destructive depending on the relative phases of the solutions.
The ray-interference region extends to θ ≈ 58 beyond which q2 has no turning points (cf. figure 2b) and only direct-ray
solutions are found.

Also shown in figure 14 is the location of the branch point rsqs along the real ν axis. The real part of ν? intersects
this curve at θ ≈ 37.5 with the result that the solution type changes from a complex direct ray (θ . 37.5) to a complex
indirect ray (θ & 37.5). The change in solution type is a consequence of the phase shift in Q(rs|ν?) that occurs as
ν? crosses the branch cut issuing from rsqs (cf. figure 12a). The asymptotic approximation (42) remains valid for ν?

arbitrarily close to the branch cut (but outside the order k−2/3

0 neighborhood of rsqs) because the contribution to the
large-k0 behavior of (41) obtained by deforming the ν-integration contour around the branch point is of higher order.

The purely real solutions for ν? are also affected by an encounter with the rsqs curve with the result that the
indirect-ray solution (θ . 42) changes to a direct-ray solution (θ & 42). The change in solution type occurs as rδ and rs
become coincident and corresponds to the change that occurs in (34) as λ−ϕs passes through π/2. The approximation
of Rω given by (42) becomes invalid near this point because ν? moves into the order k−2/3

0 neighborhood of aQ(rs|ν?)
branch point. The dominant behavior of (38) is then determined by R(×)

ω rather than R(−)
ω or R(+)

ω . The appropriate
asymptotic behavior of Rω is found by applying the method of steepest descents to (38), where the integration is done
over the contour C (×), with the result that

R(×)

ω ∼
[

rsQ(rs|ν̃)
4π
√
−η(rs|ν̃)

∣∣∣∣∣
∂ψ̃

∂ν̃

∣∣∣∣∣

]− 1
2

Ai[η(rs|ν̃)]eiβ̃eik0[∆ϕν̃+ζ(r|ν̃)−Rsin2 θ], (44)

as k0 → ∞, where

− 1
2π < β̃ ≡ − arg

[
(i∂ψ̃/∂ν̃)

1
2

]
6 1

2π, (45)

and ν̃ is determined by the saddle-point condition

∆ϕ = ψ̃(ν̃) ≡
∫ ∞

rδ

ν̃dr
r2Q(r|ν̃) . (46)

Figure 14 reveals another change in solution type which also leads to a local breakdown in the large-k0 approx-
imation given by (42). This occurs at the zone of silence boundary θ ≈ 39.5 where the complex indirect-ray saddle
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Figure 14. Saddle points ν? for an isothermal jet with rs = 0.75 and ∆ϕ = 60. Open symbols, Re ν?; closed symbols, Im ν?; 4,

direct-ray solution; � , indirect-ray solution; Solid line, Re rsqs.

point changes into a pair of real indirect-ray solutions. At the point of bifurcation, ν? becomes a saddle point of
higher-order for which

∂ψ

∂ν?

= 0, (47)

with the consequence that the right-hand side of (42) becomes unbounded. Equation (47) implies a zero in the Jacobian
determinant J introduced in Appendix C and therefore the appearance of a caustic [3], i.e. an envelope of real ray
trajectories. The breakdown is restricted to indirect-ray solutions because they are the only ones that encounter a
caustic before reaching the far field.

An expression for ∂ψ/∂ν? can be derived by using (39) and the defining equation for rδ to show that

∂

∂ν?

[
ν?

r2Q(r|ν?)

]
=

1 + 2ν2
?rP

′(r)

r2Q(r|ν?)
− ∂

∂r

[
2ν2

?P(r)

rQ(r|ν?)

]
,
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ω /Gω | × 104 for an isothermal jet with rs = 0.75, ∆ϕ = 60 and St = 2. Solid line, asymmetric approximation; dotted

line, ray-theory solution; dot-dashed line, near-branch-point solution; dot-dot-dot-dashed line, near-caustic solution.

∂rδ
∂ν?

= 2ν?rδP(rδ),

where P(r) ≡ 1/r(r2q2)′. Using these results when differentiating (43) with respect to ν? leads to

∂ψ

∂ν?

=

( ∫ ∞

rδ

∓
∫ rs

rδ

)
1 + 2ν2

?rP
′(r)

r2Q(r|ν?)
dr ± 2ν2

?P(rs)

rsQ(rs|ν?)
, (48)

where the singularity at r = rδ is integrable.
A large-k0 approximation of R(+)

ω can be constructed when the saddle point ν? approaches a zero of ∂ψ/∂ν? by
using the procedure outlined in appendix G of reference [19]. The integrand is expanded about the midpoint ν̄ rather
than the saddle point ν? when applying the method of steepest descents where ν̄ is determined by

∂

∂ν
ψ(ν) = 0, at ν = ν̄.

Notice that, in view of (48), ν̄ is independent of ∆ϕ. The resulting asymptotic approximation is

R(+)

ω ∼
[

i2πk0

rsQ(rs|ν̄)

] 1
2
[
k0

2

∣∣∣∣
∂2ψ

∂ν̄2

∣∣∣∣
]− 1

3

Ai(η̄)eiβ̄eik0[∆ϕν̄+ζ(r|ν̄)+ζ(rs|ν̄)−Rsin2 θ], (49)

as k0 → ∞, where

− 1
3π < β̄ ≡ − arg

[
(∂2ψ/∂ν̄2)

1
3

]
6 1

3π,
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η̄ ≡ −k0[ψ(ν̄) − ∆ϕ]

[
k0

2

∣∣∣∣
∂2ψ

∂ν̄2

∣∣∣∣
]− 1

3

eiβ̄,

and ψ(ν̄) is given by (43) with ν? replaced by ν̄.
Figure 15 is a plot of |Gω/Gω| as a function of polar angle θ for Strouhal number St = 2 and ∆ϕ = 60. The solid

line corresponds to the asymmetric high-frequency approximation (21). The dotted line corresponds to the ray-theory
solution given by (40) and (43). Results based on the near-branch-point solution (44) and the near-caustic solution
(49) are indicated by the dot-dashed and dot-dot-dot-dashed lines, respectively. The curves were computed using the
same mean flow and point source location as figure 14.

Comparing the dotted and solid curves shows that the ray solution is in good agreement with the asymmetric
approximation over most of the θ range including θ . 30 which is well inside the zone of silence where the rays are
complex. The discrepancy near θ = 58 is most likely due to the failure of the ray-theory solution to correctly describe
the disappearance of the indirect-ray contribution (cf. figure 14). The ray-theory result could probably be improved
by constructing a local solution that accounts for the higher-order zero in Q that emerges for the indirect-ray solution
near θ = 58. A similar explanation likely applies for the discrepancy near θ = 150 since an additional indirect-ray
solution (with m? = −1) appears in the range θ & 150.

Figure 15 also shows that the ray solution breaks down at the zone of silence boundary θ ≈ 39.5 as expected.
It is interesting to note that (42) remains bounded (although not in particularly good agreement with the asymmetric
approximation) at θ ≈ 42 where ν? equals the branch point value rsqs because, as can be shown from (48),

lim
ν2

?→r2
sq2

s

rsQ(rs|ν?)
∂ψ

∂ν?

= ±2r2sq
2
sP(rs),

where again the upper (lower) sign corresponds to the direct (indirect) ray solution.
Comparing the dot-dashed, dot-dot-dot-dashed and solid curves shows that the local solutions (44) and (49) bring

the ray-theory result into closer agreement with the asymmetric approximation and hence the exact solution in their
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respective regions of applicability. In the range 35 < θ < 50, the near-caustic solution (dot-dot-dot-dashed line) yields
better agreement with the asymmetric approximation than does the near-branch-point solution. One might then expect
that a composite solution formed from (40) and (43) together with the near-caustic solution (49) should produce good
agreement with the asymmetric approximation over the ranges of θ and ∆ϕ of interest. However, as ∆ϕ decreases,
the near-branch-point solution becomes the better approximation in the vicinity of the zone of silence boundary and a
different approach to constructing a composite ray-theory solution will be taken here.

Figure 16(a) contains a plot of θ̄ as a function of ∆ϕ where θ̄ is defined as the value of the polar angle θ at which
the indirect-ray saddle point satisfies both (43) and (47), i.e. the value at which ν? = ν̄. The θ̄ curve therefore marks
the zone of silence boundary in θ–∆ϕ space. As ∆ϕ → 0, θ̄ approaches 30.67 which is the value of θ at which q2

s

vanishes. As ∆ϕ increases, θ̄ also increases indicating that the zone of silence grows as the azimuthal angle between
the far-field observation point and the source point increases.

Figure 16(b) shows plots of the indirect-ray saddle point ν? (which is equivalent to ν̄ here) and the location of the
branch point rsqs along the real ν axis as functions of ∆ϕ at the zone of silence boundary. It is clear from the figure
that ν̄ eventually moves into the order k−2/3

0 neighborhood of a Q(rs|ν?) branch point as ∆ϕ becomes sufficiently
small. When this occurs, the near-caustic approximation (49) must be reworked in order to account for the presence of
both a branch point and a higher-order saddle point. Rather than deriving yet another local approximation for Rω, the
approach taken here is to modify the near-branch-point approximation (44) by shifting the solution to (45) as follows

ν̂ = ν̃ − ν̃|θ=θ̄ + sign(ν̃) rsqs|θ=θ̄.

Thus ν̂ coincides with the Q(rs|ν?) branch point when θ = θ̄. If the integrand in (38) is expanded about ν̂ rather than
ν̃ when the method of steepest descents is applied the following expression is obtained

R(×)

ω ∼ [right-hand side of (44)] × exp

[
i
k0

2

(∆ϕ− ψ̃)2

∂ψ̃/∂ν̃

]
, (50)

as k0 → ∞, where ψ̃ is given by (46) and all occurrences of ν̃ must be replaced by ν̂ in the above result.
The dot-dashed line in part (b) of figures 3–6 corresponds to a composite ray solution for |Gω/Gω| at ∆ϕ = 30

formed from outer and inner expansions given by (40) and (50), respectively. A multiplicative composite form was
used when η(rs|ν̂) > 0 and an additive form otherwise [20]. The figures show that the composite ray solution does an
adequate job of extending (40) through both the branch point and caustic at all St. Apart from the discrepancies near
θ = 58 and 150 discussed above, the composite solution is in fairly good agreement with the asymmetric approxima-
tion (and hence the exact result) down to St = 0.5. The disagreement near θ = 58 and 150 tends to spread over a
wider θ range as St decreases which supports the conjecture that a local large-k0 solution could improve the ray-theory
result in these regions. It is interesting to note, however, that the composite ray solution gives a better prediction of
the exact result near θ = 58 as St decreases which may indicate that the asymmetric approximation over emphasizes
the ray interference effects when St is small. At St = 0.25, the composite ray solution continues to accurately predict
the asymmetric approximation inside the zone of silence, but, outside the zone of silence, it predicts a more gradual
decline in |Gω/Gω| with θ which puts the ray-theory result in better agreement with the exact solution.

A determination of the level of agreement between the exact and high-frequency asymptotic Lilley’s equation
Green’s function for more general mean flows would require using the methods of reference [18] to extend the analysis
of Appendix C to complex rays and then supplementing those results with local solutions of the sort described in
reference [15] near any caustics or branch points. Such a program will not be undertaken here. Instead, it may be
inferred from the success of the composite ray solution at predicting the asymmetric approximation that the level of
agreement between the exact and high-frequency asymptotic solutions for more general mean flows would be similar
to that shown in figures 3–11 between the exact solution and the asymmetric high-frequency approximation.

7 Conclusions
It has been shown that, for parallel round jets, the asymmetric high-frequency approximation, which applies to

sources away from the jet axis, provides the best overall prediction of the exact Lilley’s equation Green’s function and
remains accurate for Strouhal numbers as small as 1/2. The quasi-symmetric high-frequency approximation, which
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is arrived at by making a near-axis source assumption, was found to be most successful when applied to the ring-
source directivity and gives a good approximation of the exact ring-source result at all Strouhal numbers considered
provided the polar angle from the downstream axis is sufficiently large. In this range of angles, an equivalence of the
quasi-symmetric and asymmetric ring-source approximations was demonstrated.

The ray-theory solution was shown to be closely connected to the asymmetric high-frequency approximation and
this close association was used to guide a generalization of the ray-theory result to complex rays. When combined
with appropriate local solutions near the caustic and branch point, the ray-theory solution was found to be in good
agreement with the asymmetric approximation and hence the exact result for the Lilley’s equation Green’s function.
This finding was used to infer the potential for success of the high-frequency asymptotic Green’s function for more
general (i.e. non-axisymmetric and/or non-parallel) mean flows.

The numerical results presented here apply to stationary sources embedded in a subsonic parallel round jet and are
restricted to flow situations where Lilley’s equation contains at most one simple turning point. The generalization to
multiple and/or higher-order turning points would require modifying the WKB analysis given in Appendix A but this
is straight-forward and presents no great difficulty other than algebraic. The only impediment to applying the results
of the present analysis to supersonic flows is the possibility of encountering a zero in the denominator of (24) when
the source is located such that Ms > 1. This singularity can however be ‘removed’ by the techniques developed by
Ffowcs Williams [21]. Extension to sources convecting in the mean-flow direction can be made by simply introducing
an appropriate Galilean transform into (4).

It was noted that development of a uniformly valid high-frequency asymptotic Green’s function for more general
mean flows would involve extending the ray-theory analysis of Appendix C to complex rays and then supplementing
those results with appropriate local solutions near any caustics or branch points. Although mathematically possible,
the result of such an approach may not lend itself well to implementation in a jet-noise prediction scheme because the
Green’s function would then be given as a function of the initial ray direction rather than the orientation of the far-field
observation point. One possible resolution to this difficulty may be the direct numerical integration of the Eikonal
equation (61) and the amplitude equation (62).
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A Asymmetric, high-frequency approximation
In this appendix, high-frequency asymptotic solutions for v1 and v2 are constructed using the azimuthal wavenum-

ber scaling n = O(k0). The solution forms are strongly dependent on the turning points of (13) which are determined
by the zeroes of Q2

n. It follows from (16) that

Q2
n →





−(n/k0r)
2 as r → 0,

sin2 θ as r → ∞,

and therefore that (13) always has at least one turning point with the present scaling of n.
For isothermal, subsonic jets with monotonically decreasing Mach number profiles, it can be shown [6] that Q2

n

has at most one simple zero for 0 < θ 6 90. The situation becomes complicated for more general jet profiles and for
polar angles in the range 90 < θ < 180 due to the possibility of multiple and/or higher-order turning points which
then depend on the detailed shape of the mean-flow profiles. In order to keep the analysis as simple as possible, it will
be assumed here (as well as in Appendix B) that (13) has at most one simple turning point. The present analysis can,
if necessary, be extended to more complicated situations by making some straight-forward modifications to the results
given here.

Let rδ denote the single n-dependent turning point of (13) then the general solution

v ∼





|Qn|− 1
2 (A−e−ik0ζn +B−eik0ζn), rδ − r � k

− 2
3

0 ,

ÃAi(η̃n) + B̃Bi(η̃n), |r − rδ | = O(k
− 2

3
0 ),

|Qn|− 1
2 (A+eik0ζn +B+e−ik0ζn), r − rδ � k

− 2
3

0 ,

(51)

as k0 → ∞, follows from WKB theory [11], where

η̃n ≡ χ(rδ − r), χ ≡
(
k2
0

d
dr
Q2

n

∣∣∣∣
r=rδ

) 1
3

,

ζn(r) ≡
∫ r

rδ

Qn(r)dr, Q2
n(rδ) = 0,

and Ai and Bi denote Airy functions in the notation of reference [12]. The constants A±, B±, Ã and B̃ are related by

2A− =

(
χ

πk0

) 1
2

Ã = A+ei 1
4

π +B+e−i 1
4
π, (52)
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B− =

(
χ

πk0

) 1
2

B̃ = A+e−i 1
4

π +B+ei 1
4
π, (53)

which ensure matching between the limiting forms in (51).
Applying the outgoing-wave condition (14) to (51) shows that B+ = 0. The corresponding solution can then be

written as
v1(r) ∼ Q

− 1
2

n (r)A+
1 eik0ζn(r),

as k0 → ∞, where attention is restricted to the r − rδ � k−2/3

0 behavior since that is all that is required in (20).
The bounded condition (15) requires that B− = 0. In this case, only the value of the corresponding solution at

r = rs appears in (20). However, the location of the turning point rδ relative to rs varies with both θ and n and it is
therefore convenient to express the v2 solution in the uniformly valid composite form

v2(rs) ∼ A−
2

[
4π

√
−ηn(rs)

Qn(rs)

] 1
2

Ai[ηn(rs)],

as k0 → ∞, where
ηn(r) ≡ −

[
3
2k0ζn(r)

] 2
3 ,

with the cube root defined such that ηn ≶ 0 for r ≷ rδ .
Since the Wronskian V is independent of r, the r − rδ � k−2/3

0 behavior of v1 and v2 can be used to show that

V ≡ v1v
′
2 − v′1v2 ∼ −i2k0A

+
1 A

−
2 ei 1

4
π,

as k0 → ∞. Combining this result with the expressions for v1(r) and v2(rs) given above leads to

v1(r)v2(rs)

V
∼
[

iπ

k2
0

√
−ηn(rs)

Qn(rs)Qn(r)

] 1
2

Ai[ηn(rs)]eik0ζn(r), (54)

as k0 → ∞.

B Quasi-symmetric, high-frequency approximation
In this appendix, the high-frequency solutions to (13) are constructed using the azimuthal wavenumber scaling

n = O(1). Equations (16) and (17) show that k2
0Q

2
n and S then become of equal order as r becomes sufficiently small.

The disordering of (13) is dealt with, as in reference [2], by introducing an inner region where

r̄ ≡ k0r = O(1).

The corresponding equation for v is given to the required order of accuracy by

r̄2
d2v

dr̄2
+
[
r̄2q2(0) − n2 + 1

4

]
v = 0,

which has the general solution
v ∼

√
r̄
[
ĀJn(ξ̄) + B̄H(1)

n (ξ̄)
]
, (55)

as k0 → ∞, where ξ̄ ≡ q(0)r̄ and Jn and H(1)

n denote the Bessel and Hankel functions of the first kind, respectively.
When r is order one, the solution to (13) is determined, to the required order of accuracy, by

v′′ + k2
0q

2v = 0, (56)

which can, of course, be solved using WKB theory [11]. The particular form of the solution depends on the number
and nature of the turning points determined by the zeroes of q2. As in Appendix A, it will be assumed here, for
simplicity, that the v equation has at most one simple turning point.

28NASA/CR—2003-212089



First, suppose that (56) has a turning point at r = rσ � 1/k0 where the notation rσ is used to distinguish the
zeroes of q2 from the n-dependent zeroes of Q2

n. The solution to (56) is then given by (51), (52) and (53) with n set
equal to zero. Matching that result with (55) as r̄ → O(k0) (noting that ξ̄ is purely imaginary) requires

√
2πA− = e−i(k0ξσ− 1

2
nπ)Ā,

√
2πB− = −i2ei(k0ξσ− 1

2
nπ)B̄,

where

ξ(r) ≡
∫ r

0

q(r)dr,

and a subscript σ is used to indicate evaluation at r = rσ .
Applying the outgoing-wave condition (14) shows that B+ = 0 from which follows

v1(r) ∼ A+
1

(
iπ

2

k0ξ

q

) 1
2

H(1)

n (k0ξ)e−i(k0ξσ− 1
2
nπ), (57)

as k0 → ∞, where attention is restricted to the r − rσ � k−2/3

0 behavior since that is all that is required in (20) and
the Hankel function has been introduced (without loss of generality) in order to facilitate the application of Graf’s
addition theorem [12] in section 3.

The bounded condition (15) requires B̄ = 0 and the corresponding expression for v2(rs) depends on the location
of rσ relative to rs. Reasoning that the quasi-symmetric approximation is only appropriate when rs � 1, Balsa [2]
employed the simplifying assumption that rσ − rs � k−2/3

0 , i.e. that the source is always closer to the jet axis than the
turning point. Using this assumption, v2(rs) can be expressed as

v2(rs) ∼ Ā2

(
k0ξs
qs

) 1
2

Jn(k0ξs), (58)

as k0 → ∞. It should be noted that for any given value of rs there will be, in general, a range of θ for which rs > rσ
and, consequently, for which the above expression is invalid. The implications of this failure are discussed in section
4 where comparisons with the order-one frequency solution for the reduced Green’s function are given.

Unlike the situation encountered in Appendix A, it is possible, with the present scaling of n, that the equation
governing v has no turning points. When this is the case, the solution to (56) is given as

v ∼ q−
1
2 (A+eik0ζ0 +B+e−ik0ζ0),

as k0 → ∞. Matching with (55) as r̄ → O(k0) (noting that ξ̄ is now purely real) requires

√
i2πA+ = (Ā+ 2B̄)e−i 1

2
nπ,

√
i2πB+ = iĀei 1

2
nπ .

Expressions for v1(r) and v2(rs) can be derived by applying the boundary conditions (14) and (15) as done above.
It turns out that the final expressions are in exact agreement with those given by (57) and (58) if the convention that
rσ = 0 when q2 has no zeroes is adopted.

The r-independent Wronskian V can be evaluated using the r − rσ � k−2/3

0 behaviors of v1 and v2 and is given,
for the one- and no-turning point solutions, by

V ≡ v1v
′
2 − v′1v2 ∼ −ik0

(
i2

π

) 1
2

A+
1 Ā2e−i(k0ξσ− 1

2
nπ),

as k0 → ∞. Combining this result with the expressions for v1(r) and v2(rs) given above leads to

v1(r)v2(rs)

V
∼ iπ

2

(
ξsξ

qsq

) 1
2

H(1)

n (k0ξ)Jn(k0ξs), (59)

as k0 → ∞.
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C Ray-theory approximation
In this appendix, the high-frequency solution to (4) obtained from ray theory is reviewed. Following the matched

asymptotic analysis given by Durbin [4], the solution to (4) for the uni-directional, transversely sheared mean flow (1)
is

Gω(x|xs) ∼ Φ(x)A(x|xs)e
ik0S(x|xs), (60)

as k0 → ∞, where the Eikenol S satisfies

Φ
2 − |s|2 = 0, s ≡ ∇S, (61)

the amplitude function A satisfies

∇·

[(
s + i

M

a
Φ

)
A2

]
= 0, (62)

and here Φ ≡ (1 −Mi·s)/a.
The first-order partial-differential equation (61) is reduced to the coupled system of ordinary differential equations,

ẋ = s + i
M

a
Φ, ṡ = 1

2∇⊥(Φ2), Ṡ = s·ẋ, (63)

along the rays x(τ) by the method of characteristics, where τ is a parameter that varies continuously along the ray, a
dot indicates differentiation with respect to τ and ∇⊥ is the gradient operator in the y–z plane. Equations (63) must
be solved subject to initial conditions at the source,

x = xs, ẋ = σs{cosµ, sinµ cosλ, sinµ sinλ}, S = 0, (64)

at τ = 0, where the free parameters µ and λ determine the initial ray direction relative to the Cartesian coordinate
system {x, y, z} and it follows from (61) and (63) that

σ−2
s = a2

s −M2
s sin2 µ. (65)

The amplitude function A is found by solving (62) subject to matching with a near-source solution. It follows from
the analysis of reference [4] that

A(x|xs) =
1

4πasΦs

(
σ3

s sinµ

J

) 1
2

, (66)

where

J =
∂(x, y, z)

∂(τ, µ, λ)
(67)

is the Jacobian determinant.
When attention is restricted to the far-field behavior, the solution (60) can be simplified by noting that the rays

x(τ) become straight lines in the absence of a mean flow. Thus, in the far field, the approximation,

x ∼ xs +R∞{cos θ∞, sin θ∞cosφ∞, sin θ∞sinφ∞} (68)

can be introduced, where R∞ is the distance between the far-field observation point and the source point and θ∞ and
φ∞ are the far-field polar and azimuthal angles measured from axes passing through the source point and aligned with
the x and y directions, respectively. It is important to note that φ∞, θ∞ andR∞ are not equal to ϕ, θ andR of sections
2 and 3 but approach these quantities in the far field, i.e.

φ∞ ∼ ϕ+
rs
R

csc θ sin ∆ϕ+ · · · , (69)

θ∞ ∼ θ +
rs
R

cos θ (1 − cos∆ϕ) + · · · , (70)

R∞ ∼ R+ rssin θ (1 − cos∆ϕ) + · · · , (71)
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as R → ∞.
It follows from (61) and (63) that Ṙ∞ = 1 which can then be used when inserting (68) into (67) to obtain

J ∼ R2
∞sin θ∞

∂(θ∞, φ∞)

∂(µ, λ)
, (72)

as R∞ → ∞. Since (63) implies that the quantity i·s is constant along each ray, (64) and (68) show that

i·s =
a2

sσs cosµ−Ms

a2
s −M2

s

= cos θ∞, (73)

and furthermore, in view of (65), θ∞ = θ∞(µ) and

sin θ∞
dθ∞
dµ

= a2
sσ

3
s sinµ. (74)

An additional consequence of (73) is
σ2

s sin2 µ = Φ
2
s − cos2 θ∞, (75)

which follows directly from the Eikenol equation (61). The Eikenol itself has the far-field behavior

S ∼ R∞ + S⊥(x|xs), (76)

as R∞ → ∞, where

S⊥ ≡
∫ τ

0

(s·ẋ⊥ − sin2 θ∞)dτ

remains bounded as R∞ → ∞ and x⊥ = {y, z} denotes the ray vector in the y–z plane.
Substituting (74) into (72) and the result into (66) yields the far-field approximation forA which when substituted,

together with (76), into (60) leads to (18) and (19) where now

Rω ∼
(
∂ϕ

∂λ

)− 1
2

eik0(S⊥+R∞−R), (77)

as k0, R → ∞, and use has been made of the far-field relations (69)–(71).
For the purposes of the present investigation, it is convenient to restate (63) and (64) in terms of the cylindrical

coordinates {x, r, ϕ} of section 2. The ray equations in the y–z plane are then

(ṙ)2 = Φ
2 − cos2 θ∞ − s(ϕ)2, rϕ̇ = s(ϕ),

˙(rs(ϕ)) = 1
2∂(Φ2)/∂ϕ, Ṡ⊥ = rs(ϕ)ϕ̇+ (ṙ)2 − sin2 θ∞,



 (78)

which must be solved subject to

r = rs, ϕ = ϕs, s(ϕ) = σs sinµ sin(λ − ϕs), S⊥ = 0,

at τ = 0, where rs(ϕ) ≡ ∂S/∂ϕ.
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